Отрасли производящие конструкционные материалы

Конструкционные материалы

КОНСТРУКЦИОННЫЕ МАТЕРИАЛЫ, материалы, предназначенные для изготовления конструкций (деталей машин или механизмов, приборов, сооружений, транспортных средств и др.), воспринимающих механические нагрузки. Конструкционные материалы (в отличие от других технических материалов — оптических, изоляционных, смазочных, лакокрасочных, декоративных, абразивных и пр.) должны иметь высокую конструкционную прочность, обеспечивающую их надёжную и длительную работу в условиях эксплуатации. К основным критериям качества конструкционных материалов относятся параметры сопротивления внешним (статическим, циклическим и ударным) нагрузкам — прочность, удельная прочность (особенно для конструкционных материалов, используемых в авиа- и ракетостроении), жаропрочность, выносливость и вязкость разрушения (сопротивление материала образованию трещин). В ряде случаев важными характеристиками конструкционных материалов также являются износо-, термо- и коррозионная стойкость, свариваемость, прокаливаемость и др. На механические свойства конструкционных материалов оказывает влияние (преимущественно негативное) рабочая среда, вызывая повреждение поверхности вследствие коррозионного растрескивания или изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами (например, водородом, вызывающим охрупчивание металлических конструкций). Конструкционные материалы эксплуатируются в широком температурном диапазоне — от -269 до 2500 °С; для обеспечения работоспособности при высокой температуре материал должен обладать жаропрочностью, при низкой — хладостойкостью. От технологичности конструкционных материалов (их обрабатываемости резанием, давлением, способности к литью и др.) зависит качество изготовления деталей.

Реклама

Конструкционные материалы подразделяются: по природе материалов — на металлические, неметаллические и композиционные материалы, по технологическому исполнению — на деформированные (прокат, поковки, штамповки, прессованные профили и др.), литые, спекаемые, формуемые, склеиваемые, свариваемые (плавлением, взрывом, диффузионным сращиванием и др.); по условиям эксплуатации — на работающие при низких температурах, жаропрочные, коррозионно-, окалино-, износо-, топливо-, маслостойкие и др.; по критериям прочности — на материалы малой и средней прочности с большим запасом пластичности и высокопрочные с умеренным запасом пластичности.

Наибольшее распространение среди металлических конструкционных материалов получили конструкционная сталь и чугун. Конструкционные стали характеризуются широким диапазоном предела прочности — 200-3000 МПа; применяются в строительстве, авто-, авиа-, тракторо-, судостроении и др. Предел прочности чугунов в зависимости от легирования колеблется от 110 МПа (чугаль) до 1350 МПа (чугун, легированный магнием). Чугуны широко используются в машиностроении для изготовления станин, коленчатых валов, зубчатых колёс, цилиндров двигателей внутреннего сгорания, деталей, работающих при температуре до 1200 °С в окислительной среде, и др. Сплавы на основе цветных металлов также широко применяются в различных областях техники. Никелевые сплавы и кобальтовые сплавы сохраняют прочность и жаропрочность до 1000-1100 °С, интерметаллидные сплавы на основе соединения Ni3Al — до 1200 °С; применяются в авиационных и ракетных двигателях, паровых и газовых турбинах, аппаратах, работающих в агрессивных средах, и др. Алюминиевые сплавы по удельной жёсткости значительно превосходят стали, предел прочности деформируемых сплавов составляет до 750 МПа, литейных — до 550 МПа; служат для изготовления корпусов самолётов, вертолётов, ракет, судов и др. Магниевые сплавы отличаются малой плотностью (в 4 раза меньше, чем у стали), имеют предел прочности до 400 МПа и выше; применяются преимущественно в виде литых деталей в конструкциях ЛА, в автомобилестроении, в полиграфической промышленности и др. Титановые сплавы (предел прочности до 1600 МПа и более) превосходят стали и алюминиевые сплавы по удельной прочности, коррозионной стойкости и жёсткости; служат для изготовления компрессоров авиационных двигателей, аппаратов нефтеперерабатывающей и химической промышленности и др. Циркониевые сплавы, наряду с малым поперечным сечением поглощения тепловых нейтронов, обладают прочностью, пластичностью и коррозионной стойкостью в агрессивных средах; используются в ядерной энергетике для элементов конструкции активной зоны реакторов АЭС. Повышение эксплуатационных свойств металлических конструкционных материалов, получаемых традиционными методами, связано с использованием легированных и нанокристаллических металлических порошков.

Неметаллические конструкционные материалы включают полимерные материалы, керамику, огнеупоры, стёкла, резины, древесину. Термопласты (полистирол, полиметилметакрилат, полиамиды, фторопласты), а также реактопласты используются в деталях электро- и радиооборудования, узлах трения, работающих в различных средах, в том числе в химически активных: топливах, маслах и др. Стёкла (силикатные, кварцевые, органические) и триплексы на их основе служат для остекления судов, самолётов, ракет; из керамических материалов изготовляют детали, работающие при высоких температурах. Огнеупоры применяются преимущественно в чёрной и цветной металлургии при изготовлении огнеупорных футеровок в агрегатах, работающих в условиях высоких температур (более 900 °С). Резины на основе различных каучуков, упрочнённые кордными тканями, применяются для производства покрышек или монолитных колёс самолётов и автомобилей, а также различных подвижных и неподвижных уплотнений. Древесина используется в качестве шпал, крепи для угольной и горнорудной промышленности, для производства строительных конструкций, домов и др.

Композиционные конструкционные материалы по удельной прочности и удельному модулю упругости на 50-100% превосходят стали или алюминиевые сплавы и обеспечивают снижение массы конструкций на 20-50%. Композиционные конструкционные материалы (углепластики, органопластики, органотекстолиты, алюмостеклопластики и др.) широко применяются в конструкциях самолётов, ракет, в энергетическом, транспортном машиностроении и др.

Получение новых конструкционных материалов с улучшенными (по сравнению с традиционными конструкционными материалами) свойствами связано с синтезом материалов с субмикроскопической структурой из элементов, имеющих предельные значения свойств (предельно прочных, тугоплавких, термостабильных), а также с применением специальных методов изготовления (значительно повышающих прочность и долговечность материалов). Например, для металлических конструкционных материалов используется направленная кристаллизация сталей и сплавов для получения литых деталей со столбчатой структурой зёрен, монокристаллических деталей из никелевых сплавов с определённой кристаллографической ориентацией относительно действующих напряжений (лопатки газовых турбин); для неметаллических конструкционных материалов применяются методы ориентации линейных макромолекул полимерных материалов, модифицирование наночастицами (фуллеренами, нанотрубками, нановолокнами), создание полимерных нанокомпозитов.

Лит.: Машиностроение: Энциклопедия. М., 2001. Т. 2/3: Цветные металлы и сплавы. Композиционные металлические материалы / Ред.-сост. И. Н. Фридляндер; Болтон У. Конструкционные материалы: металлы, сплавы, полимеры, керамика, композиты. 2-е изд. М., 2007.

Н. В. Петрушин.

>Конструкционные материалы

Конструкционные материалы – это материалы, на основе которых изготавливают детали для машин, инженерных сооружений и конструкций. Они в ходе работы неоднократно будут подвергаться механическим нагрузкам. Такие детали характеризуются большим разнообразием не только форменным, но и эксплуатационным. Их применяют в разных отраслях промышленности, с их помощью делают промышленные печи, детали для автомобилей, их используют в авиационной сфере. Задача производителя выполнить конструкционную деталь, готовую работать при разных температурах, в разных средах и с достаточно интенсивными нагрузками. Главным отличием продукции от остальных дополнений конструкций является их готовность долговременно принимать на себя максимальные нагрузки.

Виды, типы, классификации

Ввиду того что металлы являются практически самыми надежными и долговечными составляющими, конструкционные материалы изготавливаются в большей степени из них. Поэтому КМ классифицируются и распознаются по материалу, из которого были изготовлены. Зачастую из металлов предпочитают сталь из-за ее прочности, надежности и легкости в обработке.

  • Металлические конструкционные материалы

За основу материалов берут сплавы, выполненные из стали, чугуна и железа. Данный вид имеет хорошую прочность, детали и элементы используются чаще других. Также используют сплавы с магнитными и немагнитными формами. Применяются цветные и не цветные сочетания металлов. Зачастую это алюминий, но в некоторых деталях возможно использование сплавов на его основе. Сплавы используют в том случае, когда деталь нужно деформировать и преобразовывать неоднократно. Из цветных также используют медь (бронзу), титан.

  • Неметаллические конструкционные материалы

Неметаллические материалы стали использоваться гораздо позднее предыдущей группы. Развитие технологий помогло создать более дешевую альтернативу. При этом неметаллы также прочны и надежны. Неметаллические конструкционные материалы изготавливают из древесины, керамики, стекла и разных видов резины.

  • Композиционные материалы

Композиционные материалы состоят из элементов, сильно отличающихся друг от друга по свойствам. Они позволяют создавать конструкции с заранее определенными характеристиками. Материалы применяют для повышения эффективности. Название состава задается материалом матрицы. Такие материалы все имеют основу. Композиты, имеющие металлическую матрицу – металлические, керамическую – керамические и так далее. Они созданы искусственным путем, материал, который получают на выходе, имеет новый комплекс свойств. Композиционные материалы могут включать в себя как металлические, так и с неметаллические составляющие.

Существует еще одна классификация, позволяющая распознать какой именно необходим материал для выполнения выбранной задачи – это разбор на виды по техническим критериям.

  • Материалы с повышенной прочностью;
  • Материалы, имеющие отличительные технологические возможности;
  • Долговечные материалы (элементы, на эксплуатацию которых не влияют механические раздражители);
  • Упругие конструкционные материалы;
  • Неплотные материалы;
  • Материалы устойчивые к природным воздействиям;
  • Материалы, имеющие высокую прочность.

Сферы применения

Использование конструкционных материалов приходится на любую сферу, связанную со строением и производством. Наиболее широкий спектр в использовании получили электроэнергетическая, строительная и машиностроительная отрасли. Именно здесь собрание конструкций является первой частью для созидания большого проекта.

ГруппыМатериалыСфера примененияМех. свойства
Металлические конструкционные материалыБронзаДля получения фасонных отливок, втулок, подшипников, зубчатых колес и шестерен.Высокая прочность на сжатие и фрикционные нагрузки, не окисляется.
Инструментальная стальДля изготовления мерительных инструментов, режущих частей и мерных шаблонов.Прочная, тяжелая, не окисляется, водостойкая.
ТитанОтветственные детали в сфере авиации, ракетостроения и медицине.Легкий, водостойкий, токопроводящий.
Неметаллические конструкционные материалыРезинаУплотняющие элементы любых конструкций, изоляторы от напряжения, герметизация, гибкие детали в сфере автомобилестроения, медицины, ракетостроения.Низкая плотность при высокой упругости. Устойчивость к химическим и термическим воздействиям.
ПластмассыШирокое применение для изготовления изделий народного хозяйства, автомобилестроения, пищевой, авиационной, строительной промышленностей.Низкая плотность и хорошая прочность. Низкая температура плавления. Устойчивость к химическим воздействиям.
АзбестПроизводство труб, покрытия домов, огнеупорных тканей и уплотнителей.Низкая прочность при ударе. Устойчивость к природным воздействиям и химическим.
КерамикаИзготовление посуды, изделий для туалета и ванной. Изготовление моделей и сувениров. Отдельные виды используются для изготовления ножей и режущего инструмента.Высокая плотность, хрупкость, устойчивость к коррозии. Низкая упругость. Устойчивость к стиранию.
Арамидные ткани (кевлар, тварон, арселон)Производство бронежилетов, армирующего слоя автомобильных шин, защитного слоя кабелей, экипировка для космонавтов, мотоциклистов, пожарников.Высокая прочность, гибкость и низкая плотность. Устойчивость к химическому и механическому воздействию.
Композиционные материалыФанераМебельное производство, отделка помещений, сборно-щитовые конструкции в строительствеНизкая плотность при высокой прочности. Простота обработки
БетонСтроительство самых разнообразных домов и конструкций.Высокая прочность на сжатие. Большая плотность.
СтеклопластикИзготовление корпусов лодок и катеров. Обвеска автомобиля и диэлектрические детали. Корпуса бассейнов и декоративных изделий.Высокая прочность и низкая плотность. Низкая пластичность.

Состав комплекса конструкционных материалов:

Комплекс конструкционных материалов

Металлургический комплекс

Производство строительных материалов

Химико-лесной

комплекс

черная

цветная

Химия

Лесная

отходы

Производство проката

Бытовая и парфюмерия

Переработка полимеров

лесохимия

Целлюлозно-бумажн.

Сталь

Чистый

металл

гидролиз

Плавильное производство

Производство удобрений

Производство полимеров

Производство

мебели

рафинирование

Внедоменное производство

Черновой

металл

Пр-во др. продуктов основной химии

Органический синтез

Лесопиление и

деревообработка

окатыши

Доменное производство

ГОРНОДОБЫВАЮЩАЯ ПРОМЫШЛЕННОСТЬ

В этом комплексе объединяются отрасли, производящие конструкционные материалы, т.е. материалы, предназначенные для изготовления готовых изделий или сооружений: черная и цветная металлургия, химическая и лесная промышленность, производство строительных материалов. Такое объединение обусловлено, во-первых, участием этих отраслей в производстве конструкций, предназначенных для изготовления готовых изделий или сооружений, а во-вторых, многие виды продукции комплекса взаимозаменяемы (например, металл и стройматериалы в настоящее время активно заменяются пластмассами и полимерами).

Горнодобывающая промышленностьлежит в основе не только этого комплекса, с ней тесно связаны проблемы рационального использования природных ресурсов и формирование экологической политики государства. География развития этой отрасли зависит от природных ресурсов. Добывающая промышленность в России имеет несовершенную структуру: она крайне гипертрофирована и на ее долю приходится 22,5% производства, хотя в развитых странах — не выше 9%. Причиной этого является не только богатство и разнообразие природных ресурсов в нашей стране, но и технологическая отсталость промышленности, не дающая возможности эффективно использовать добываемые ресурсы. Добывающей промышленности России присущ ряд негативных черт:

  • большие нарушения литосферы вследствие большой переработки горных пород;

  • потери при добыче огромного количества сырья;

  • слабо внедряются прогрессивные методы добычи, что оказывает влияние на себестоимость полученных металлов;

  • слабое использование вторичных ресурсов;

  • не происходит снижения темпов развития добывающей промышленности, характерное для развитых стран.

Крупные сочетания ресурсов, которые имеют общегосударственное значение и охватывают обширные территории, называются ресурсными базамистраны. В России это:

Урало-Поволжская,

Центральная,

Южно-Сибирская,

Северо-Восточная,

Приморская.

Записи созданы 1930

Добавить комментарий

Ваш e-mail не будет опубликован. Обязательные поля помечены *

Начните вводить, то что вы ищите выше и нажмите кнопку Enter для поиска. Нажмите кнопку ESC для отмены.

Вернуться наверх